CS 328: Numerical Methods for Visual Computing (Fall 2017)
2-4pm (Lecture)
4-5pm (Exercise)
Instructor
Teaching Assistant
Teaching Assistant
Teaching Assistant
General information
Summary: Visual computing disciplines are characterized by their universal reliance on numerical algorithms to process and display large amounts of visual information such as geometry, images, and volume data; an understanding of numerical methods is thus an important prerequisite to working in this area. This course will familiarize students with a range of essential numerical tools to solve practical problems in a visual computing context.
Contents: This course provides a first introduction to the field of numerical analysis with a strong focus on visual computing applications. Using examples from computer graphics, geometry processing, computer vision, and computational photography, students will gain hands-on experience with a range of essential numerical algorithms.
The course will begin with a review of important considerations regarding floating point arithmetic and error propagation in numerical computations. Following this, students will study and experiment with several techniques that solve systems of linear and non-linear equations. Since many interesting problems cannot be solved exactly, numerical optimization techniques constitute the second major topic of this course. Students will learn how principal component analysis can be leveraged to compress or reduce the dimension of large datasets to make them easier to store and analyze. The course concludes with a review of numerical methods that make judicious use of randomness to solve problems that would otherwise be intractable.
Students will have the opportunity to gain practical experience with the discussed methods using programming assignments based on Scientific Python.
Prerequisites: Course prerequisites are MATH-101 (Analysis I) and MATH-111 (Linear Algebra). The courses CS-211 (Introduction to visual computing) and MATH-106 (Analysis II) are recommended but not required.
Students are expected to have good familiarity with at least one programming language (e.g. C/C++, Java, Scala, Python, R, Ruby...). The course itself will rely on Python, but this is straightforward to learn while taking the course. During the first weeks of the semester, there will be tutorial sessions on using Python and Scientific Python.
Although it is not a strict prerequisite, this course is highly recommended for students who wish to pursue studies in the area of Visual Computing, in particular: CS-341 (Introduction to computer graphics), CS-440 (Advanced computer graphics), CS-442 (Computer vision), CS-413 (Computational Photography), CS-444 (Virtual Reality), and CS-445 (Digital 3D geometry processing)
Learning outcomes: At the end of the course, students should be able to:
-
Write computer programs that use numerical linear algebra and analysis techniques to transform and visualize data
-
Reason about ways of structuring numerical computations efficiently.
-
Analyze the numerical stability of programs built on floating point arithmetic
-
Recognize numerical problems in visual computing applications and cast them into a form that can be solved or optimized.
Teaching methods: Lectures, interactive demos, theory and programming exercises
Expected student activities: Students are expected to study the provided reading material and actively participate in class and in exercise sessions. They will be given both theoretical exercises and a set of hands-on programming assignments.
Assessment methods:
- Continuous assessment during the semester via project assignments (50%)
- Final exam (50%)
Resources: Slides and other resource will be provided at the end of each class. The course textbook is Numerical Algorithms: Methods for Computer Vision, Machine Learning, and Graphics by Justin Solomon (freely available here)
The following optional references are optional but highly recommended: Scientific Computing: An Introductory Survey (2nd edition) by Michael Heath and What Every Computer Scientist Should Know About Floating-Point Arithmetic by David Goldberg.
Late policy: the score of late homework submissions is reduced by -25% per late day.
Academic Integrity: Assignments must be solved and submitted individually. Do not copy (or even look at) parts of any of the homeworks from anyone else including the web. Do not make any parts of your homework available to anyone, and ensure that your files are not accessible to others. The university policies on academic integrity will be applied rigorously.
Office hours:
- TA office hours: BC329, Monday 16:00-17:00.
- Wenzel's office hours: BC345, Tuesday 10:00-11:00.
Exam: The exam takes place on Wednesday 31.01.2018 from 08h15 to 11h15 (SG1)
Schedule
Date | Lecturer | Contents |
---|---|---|
20.09.2017 | Wenzel Jakob |
Lecture: Administrative details, overview of course topics, introduction to Floating Point arithmetic & error analysis. Reading: Solomon, Chapter 1 (everything except Lagrange Multipliers) & Chapter 2. |
20.09.2017 |
Exercise (Tizian & Jan): Introduction to Python. |
|
27.09.2017 | Wenzel Jakob |
Lecture: How to write efficient numerical code: high-performance computing, processor architecture trends, parallelism, vectorization. Reading: None. |
27.09.2017 | Sami Arpa |
Exercise: Introduction to NumPy. |
29.09.2017 |
Homework 1 posted. |
|
04.10.2017 | Helge Rhodin |
Lecture: Linear systems review, LU decomposition. Reading: Solomon, Chapter 3. |
04.10.2017 |
Exercise: Part 1: Introduction to Matplotlib, Part 2: homework Q&A. |
|
11.10.2017 | Wenzel Jakob |
Lecture: Conditioning of linear systems, Intro to Least Squares Reading: Solomon, Chapter 4. |
11.10.2017 |
Exercise: homework Q&A. |
|
16.10.2017 |
Homework 2 posted. |
|
18.10.2017 | Wenzel Jakob |
Lecture: Least Squares continued, QR Factorization, Regularization Reading: Solomon, Chapter 5 (you can skip over the section on Gram-Schmidt QR). |
18.10.2017 | Jan Bednarík |
Exercise: discussion of Homework 1 solutions, Homework 2 Q&A. |
25.10.2017 | Wenzel Jakob |
Lecture: Singular Value Decomposition Reading: Chapter 6 [up to 6.4.1] |
25.10.2017 |
Exercise: Homework Q&A. |
|
01.11.2017 | Helge Rhodin |
Lecture: (Nonlinear) Root finding and optimization (1D) Reading: Solomon, Chapter 8, Section 1: Nonlinear Systems (1D case) Homework 3 posted. |
01.11.2017 |
No exercise |
|
08.11.2017 | Helge Rhodin |
Lecture: Nonlinear problems, Multiple variables and Optimization Reading: Solomon, Chapter 9 |
08.11.2017 | Tizian Zeltner |
Exercise: discussion of Homework 2 solutions, Homework 3 Q&A. |
15.11.2017 | Wenzel Jakob |
Lecture: Interpolation |
15.11.2017 |
Exercise: homework Q&A. |
|
17.11.2017 |
Homework 4 posted. |
|
22.11.2017 | Helge Rhodin |
Lecture: Neural networks. Reading: Neural Networks and Deep Learning (online book), Chapter 1-2 |
22.11.2017 |
Exercise: Homework 3 review, Homework Q&A. |
|
29.11.2017 | Wenzel Jakob |
Lecture: Numerical integration. Reading: Solomon, Chapter 14.1 & 14.2.[1,2,3,5,6] |
29.11.2017 |
Exercise: Homework Q&A. |
|
05.12.2017 |
Homework 5 posted. |
|
06.12.2017 | Wenzel Jakob |
Lecture: Monte Carlo methods. Reading: PhD Thesis by Wojciech Jarosz: Appendix A: Monte Carlo Integration, pages 149-157 |
06.12.2017 |
Exercise: Homework Q&A. |
|
13.12.2017 | Wenzel Jakob |
Lecture: Markov Chain Monte Carlo |
13.12.2017 |
Exercise: Homework Q&A. |
|
20.12.2017 | Wenzel Jakob |
Lecture: Wrap-up, homework 4 & exam review. |
20.12.2017 |
Exercise: Homework Q&A. |